Difmicro Technolog

DIF81F646

Datasheet

Content

DIF81F646 Product characteristics	
Pin Diagrams	3
CPU Kernel	
DEVICE OVERVIEW	4
Clocking Scheme/Instruction Cycle	8
Instruction Flow/Pipelining	3
MEMORY ORGANIZATION	g
Program Memory Organization for the DIF81F646	g
Data Memory Organization	10
GENERAL PURPOSE REGISTER FILE	11
SPECIAL FUNCTION REGISTERS	12
ELECTRICAL SPECIFICATIONS	16
DC Characteristics:DIF81F646	18
Package Details	19

DIF81F646 Product characteristics

High-Performance RISC CPU:

- Operating speeds from DC 20 MHz
- Interrupt capability
- 8-level deep hardware stack
- Direct, Indirect and Relative Addressing modes
- 35 single-word instructions:
 - All instructions single cycle except branches

Special Microcontroller Features:

- Internal and external oscillator options:
 - Precision internal 4 MHz oscillator factory calibrated to ±1%
 - Low-power internal 48 kHz oscillator
 - External Oscillator support for crystals and resonators
- Power-saving Sleep mode
- Programmable weak pull-ups on PORTB
- Multiplexed Master Clear/Input-pin
- Watchdog Timer with independent oscillator for reliable operation
- Low-voltage programming
- In-Circuit Serial Programming (via two pins)
- Programmable code protection
- Brown-out Reset
- Power-on Reset
- Power-up Timer and Oscillator Start-up Timer
- Wide operating voltage range (2.0-5.5V)
- Industrial and extended temperature range
- High-Endurance Flash/EEPROM cell:
 - 100,000 write Flash endurance
 - 1,000,000 write EEPROM endurance
 - 40 years data retention

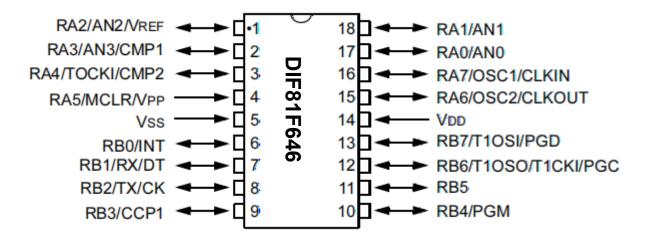
Low-Power Features:

- Standby Current:
 - 100 nA @ 2.0V, typical
- Operating Current:
 - 12 μA @ 32 kHz, 2.0V, typical
 - 120 μA @ 1 MHz, 2.0V, typical
- Watchdog Timer Current:
 - 1 µA @ 2.0V, typical
- Timer1 Oscillator Current:
 - 1.2 µA @ 32 kHz, 2.0V, typical
- **Dual-speed Internal Oscillator:**
- Run-time selectable between 4 MHz and 48 kHz
- 4 µs wake-up from Sleep, 3.0V, typical

Peripheral Features:

- 16 I/O pins with individual direction control
- High current sink/source for direct LED drive
- Analog comparator module with:
 - Two analog comparators
 - Programmable on-chip voltage reference (VREF) module
 - Programmable input multiplexing from device inputs and internal voltage reference
 - Comparator outputs are externally accessible
- Timer0: 8-bit timer/counter with 8-bit programmable prescaler
- Timer1: 16-bit timer/counter with external crystal/ clock capability
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Capture, Compare, PWM module:
 - 16-bit Capture/Compare
 - 10-bit PWM
- Addressable Universal Synchronous/Asynchronous Receiver/Transmitter USART/SCI

Table 1.DIF81F646


Device	Program Memory	Data M	emory	I/O	ССР	HEADT	Comparators	Timers	
Device	Flash (words)	SRAM (bytes)	EEPROM (bytes)	1/0	(PWM)	USARI	Comparators	8/16-bit	
DIF81F646	2048	224	128	16	1	Υ	2	2/1	



Pin Diagrams

DIF81F646DI(18-pin DIP)
DIF81F646SI(18-pin SOP)

DIF81F646XI(20-pin SSOP)

CPU Kernel

DEVICE OVERVIEW

The high performance of the DIF81F646 family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the DIF81F646 uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional Von Neumann architecture where program and data are fetched from the same memory. Separating program and data memory further allows instructions to be sized differently than 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single-word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches.

The Table below lists program memory (FLASH, Data and EEPROM).

Table 2.DIF81F646 MEMORY

	Memory						
Device	FLASH	RAM	EEPROM				
	Program	Data	Data				
DIF81F646	2048 x 14	224 x 8	128 x 8				

The DIF81F646 can directly or indirectly address its register files or data memory. All Special Function Registers (SFR), including the program counter, are mapped in the data memory. The DIF81F646 have an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation, on any register, using any addressing mode. This symmetrical nature and lack of 'special optimal situations' makes programming with the DIF81F646 simple yet efficient. In addition, the learning curve is reduced significantly.

The DIF81F646 devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the Status Register. The C and DC bits operate as Borrow and Digit Borrow out bits, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram is shown in **Figure 1**, and a description of the device pins in **Table 3**.

Two types of data memory are provided on the DIF81F646 devices. Nonvolatile EEPROM data memory is provided for long term storage of data, such as calibration values, look-up table data, and any other data which may require periodic updating in the field. These data types are not lost when power is removed. The other data memory provided is regular RAM data memory. Regular RAM data memory is provided for temporary storage of data during normal operation. Data is lost when power is removed.

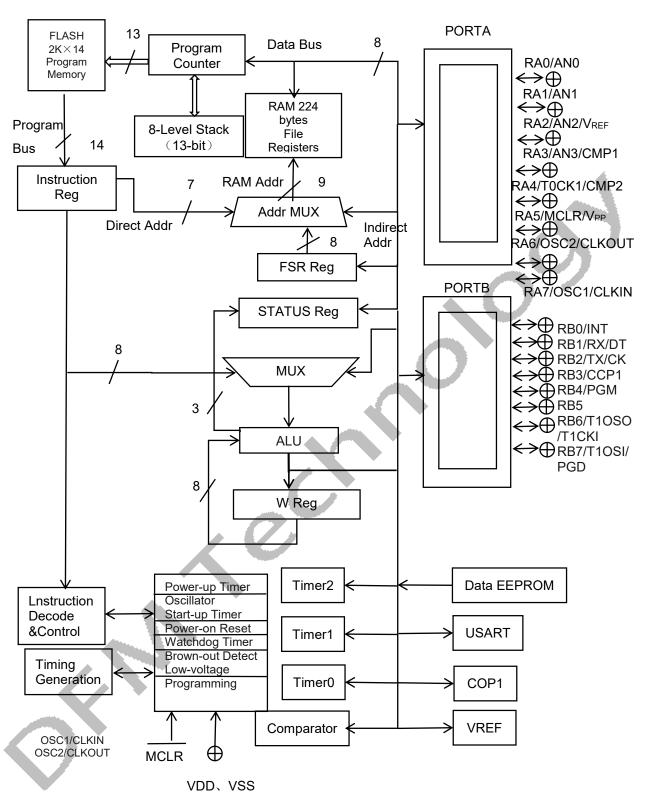


Figure 1. BLOCK DIAGRAM

Note 1: Higher order bits are from the STATUS register.

Table 3. DIF81F646 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
DAO/ANO	RA0	ST	CMOS	Bi-directional I/O port
RA0/AN0	AN0	AN	_	Analog comparator input
DA4/AN4	RA1	ST	CMOS	Bi-directional I/O port
RA1/AN1	AN1	AN	_	Analog comparator input
	RA2	ST	CMOS	Bi-directional I/O port
RA2/AN2/VREF	AN2	AN	_	Analog comparator input
	VREF	_	AN	VREF output
	RA3	ST	CMOS	Bi-directional I/O port
RA3/AN3/CMP1	AN3	AN	_	Analog comparator input
	CMP1	_	CMOS	Comparator 1 output
	RA4	ST	OD	Bi-directional I/O port
RA4/T0CKI/CMP2	T0CKI	ST	_	Timer0 clock input
	CMP2	_	OD	Comparator 2 output
	RA5	ST	_	Input port
	MCLR	ST	_	Master clear
RA5/MCLR/VPP	VPP	_	_	Programming voltage input. When configured as MCLR, this pin is an <u>active</u> low RESET to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation.
	RA6	ST	CMOS	Bi-directional I/O port
RA6/OSC2/CLKOUT	OSC2	_	XTAL	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
TWO/OGOZ/OLINGOT	CLKOUT	-	CMOS	In ER/INTRC mode, OSC2 pin can output CLKOUT, which has 1/4 the frequency of OSC1
	RA7	ST	CMOS	Bi-directional I/O port
RA7/OSC1/CLKIN	OSC1	XTAL	_	Oscillator crystal input
	CLKIN	ST	_	External clock source input. ER biasing pin.
RB0/INT	RB0	TTL		Bi-directional I/O port. Can be software programmed for internal weak pull-up.
•	INT	ST	_	External interrupt.
	RB1	TTL		Bi-directional I/O port. Can be software programmed for internal weak pull-up.
RB1/RX/DT	RX	ST	_	USART receive pin
	DT	ST	CMOS	Synchronous data I/O.
	RB2	TTL	CMOS	Bi-directional I/O port.
RB2/TX/CK	TX	_	CMOS	USART transmit pin
	СК	ST	CMOS	Synchronous clock I/O. Can be software programmed for internal weak pull-up.
RB3/CCP1	RB3	TTL		Bi-directional I/O port. Can be software programmed for internal weak pull-up.
			i e	1

Legend: O = Output CMOS = CMOS Output P = Power,

— = Not used I = Input ST = Schmitt Trigger input

TTL = TTL input OD = Open Drain Output AN = Analog

Name	Function	Input Type	Output Type	Description
	RB4	TTL	CMOS	Bi-directional I/O port. Can be software programmed for internal weak pull-up.
RB4/PGM	PGM	ST — c		Low voltage programming input pin. Interrupt- on-pin change. When low voltage program- ming is enabled, the interrupt-on-pin change and weak pull-up resistor are disabled.
RB5	RB5	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
	RB6	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
RB6/T1OSO/T1CKI/PGC	T10S0	_	XTAL	Timer1 oscillator output.
	T1CKI	ST	_	Timer1 clock input.
	PGC	ST	_	ICSP Programming Clock.
	RB7	TTL	CMOS	Bi-directional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.
RB7/T1OSI/PGD	T1OSI	XTAL	_	Timer1 oscillator input. Wake-up from SLEEP on pin change. Can be software programmed for internal weak pull-up.
	PGD	ST	CMOS	ICSP Data I/O
Vss	Vss	Power	_	Ground reference for logic and I/O pins
VDD	VDD	Power	- 4	Positive supply for logic and I/O pins

Legend: O = Output

CMOS = CMOS Output

P = Power,

— = Not used I = Input

ST = Schmitt Trigger input

TTL = TTL input OD = Open Drain Output

AN = Analog

Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN/RA7 pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4.

Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change, (e.g., GOTO) then two cycles are required to complete the instruction.

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

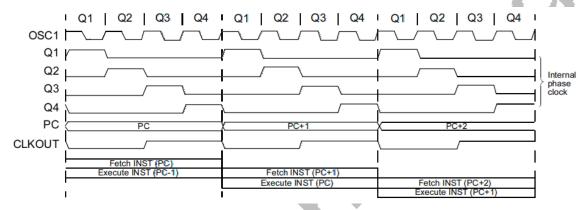


Figure 2.CLOCK/INSTRUCTION CYCLE

EXAMPLE:

除程序转移指令外,所有指令都是单周期指令。由于程序转移指令将导致一条已取指令从流水线清除,需要重新取指,然后执行指令,所以程序转移指令需要两个周期。

MEMORY ORGANIZATION

Program Memory Organization for the DIF81F646

The DIF81F646 has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first $2K \times 14$ (0000h-07FFh) for the DIF81F646 is physically implemented. Accessing a location above these boundaries will cause a wrap- around within the first $2K \times 14$ space (DIF81F646). The Reset vector is at 0000h and the interrupt vector is at 0004h.

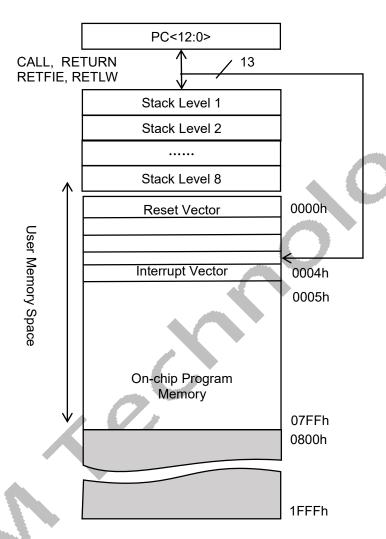


Figure 3.PROGRAM MEMORY MAP AND STACK

Data Memory Organization

The data memory is partitioned into four banks, which contain the General Purpose Registers (GPRs) and the Special Function Registers (SFRs). The SFRs are located in the first 32 locations of each bank. There are General Purpose Registers implemented as static RAM in each bank. **Table 4** lists the General Purpose Register available in each of the four banks.

Table 4.GENERAL PURPOSE STATIC RAM REGISTERS

	DIF81F646
Bank0	20-7Fh
Bank1	A0h-FF
Bank2	120h-14Fh, 170h-17Fh
Bank3	1F0h-1FFh

Addresses F0h-FFh, 170h-17Fh and 1F0h-1FFh are implemented as common RAM and mapped back to addresses 70h-7Fh.

Table 5 lists how to access the four banks of registers via the Status register bits RP1 and RP0.

Table 5.ACCESS TO BANKS OF REGISTERS

Bank	RP1	RP0
0	0	0
1	0	1
2	1	0
3	1	1,

GENERAL PURPOSE REGISTER FILE

The register file is organized as 224 x 8 in the DIF81F646. Each is accessed either directly or indirectly through the File Select Register (FSR),

							File Address
Indirect addr. (1)	00h	Indirect addr.(10)	80h	Indirect addr.(1)	100h	Indirect addr. (1)	180h
TMR0	01h	OPTION	81h	TMR0	101h	OPTION	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR.	84h	FS:R	104h	FSR	184h
PORTA	05h	TRISA.	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
	07h	TITIOD	87h		107h		187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch		10Ch		18Ch
	0Dh	1121	8Dh		10Dh		18Dh
TMR1L	0Eh	PCON	8Eh		10Eh		18Eh
TMR1H	0Fh		8Fh		10Fh		18Fh
T1CON	10h		90h				†
TMR2	11h		91h				
T2CON	12h	PR2	92h				
	13h		93h				
	14h		94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
RCSTA	18h	TXSTA	98h				
TXREG	19h	SPBRG	99h				
RCREG	1Ah	EEDATA	9Ah				
NONEO	1Bh	EEADR.	9Bh				
	1Ch	EECON1	9Ch				
	1Dh	EECON2(1)	9Dh				
	1Eh		9Eh				
CMCON	1Fh	VRCON	9Fh		11Fh		
	20h		A0h	General	120h		
General		General	Aun	Purpose Register			
Purpose		Purpose		48 Bytes	14Fh		
Register		Register 80 Bytes		•	150h		
80 Bytes		ou bytes					
	6Fh		EFh		16Fh		1EFh
	70h		F0h		170h		1F0h
16 Bytes		accesses		accesses 70h-7Fh		accesses 70h-7Fh	
	7Fh	70h-7Fhi	FFh	/Un-FFII	17Fh	VOII-VEII	1FFh
Bank 0	1 /FII	Bank 1	FFII	Bank:2	IVEN	Bank 3	- HEED

Unimplemented data memory locations, read as '0'.

Note 1: Not a physical register.

Figure 4.DATA MEMORY MAP OF THE DIF81F646

SPECIAL FUNCTION REGISTERS

The SFRs are registers used by the CPU and Peripheral functions for controlling the desired operation of the device **Table 6**. These registers are static RAM.

The special registers can be classified into two sets (core and peripheral). The SFRs associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

Table 6.SPECIAL REGISTERS SUMMARY BANK 0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset(1)	
Bank 0									•		
00h	INDF	Addressin	ddressing this location uses contents of FSR to address data memory (not a physical register)								
01h	TMR0	Timer0 Mo	dule's Regist	er						xxxx xxxx	
02h	PCL	Program C	Program Counter's (PC) Least Significant Byte								
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	
04h	FSR	Indirect da	ta memory ac	ldress pointe	r					xxxx xxxx	
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx 0000	
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	
07h	_	Unimplem	ented							_	
08h	_	Unimplem	ented							_	
09h	_	Unimplem	ented							_	
0Ah	PCLATH	_	_	_	Write buffer	for upper 5 b	its of progra	m counter		0 0000	
0Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	
0Dh	_	Unimplem	ented							_	
0Eh	TMR1L	Holding re	gister for the l	_east Signific	ant Byte of tl	ne 16-bit TMI	₹1			xxxx xxxx	
0Fh	TMR1H	Holding re	gister for the l	Most Signific	ant Byte of th	e 16-bit TMF	21			xxxx xxxx	
10h	T1CON	_	ı	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00 0000	
11h	TMR2	TMR2 mod	dule's register	,						0000 0000	
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	
13h	_	Unimplem	ented							_	
14h	_	Unimplem	ented							_	
15h	CCPR1L	Capture/C	ompare/PWN	register (LS	B)					xxxx xxxx	
16h	CCPR1H	Capture/C	ompare/PWM	register (MS	SB)					xxxx xxxx	
17h	CCP1CON		I	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 -00x	
19h	TXREG	USART Tr	ansmit data r	egister						0000 0000	
1Ah	RCREG	USART R	eceive data re	gister		-		-		0000 0000	
1Bh	_	Unimplem	ented								
1Ch	_	Unimplem	ented								
1Dh	_	Unimplem	ented								
1Eh	_	Unimplem	ented								
1Fh	CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	

Legend: – = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: For the Initialization Condition for Registers Tables

Table 7.SPECIAL FUNCTION REGISTERS SUMMARY BANK 1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset(1)
Bank 1			I	I	1	I		I		
80h	INDF	Addressing register)	this location	uses conte	ents of FSR	to address	data memo	ry (not a ph	ysical	xxxx xxxx
81h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111
82h	PCL	Program C	ounter's (PC)	Least Sign	ificant Byte	!		l.	l	0000 0000
83h	STATUS	IRP	RP1	RP0	ТО	PD	Z	DC	С	0001 1xxx
84h	FSR	Indirect dat	ia memory ad	ldress noint		L L D				XXXX XXXX
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111
87h	-	Unimpleme	l	TTTIODO	TITIODI	114,000	TTUODE	1141001	1141000	
88h	_	Unimpleme								_
89h	_	Unimpleme								_
8Ah	PCLATH	—	_	_	Write buffe	r for upper !	5 bits of pro	gram count	er	0:0000
8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000
8Dh	_	Unimpleme	ented		<u> </u>					_
8Eh	PCON	_	_	_	_	OSCF	_	POR	BOD	1-0x
8Fh	_	Unimpleme	ented		1			1010	.000	_
90h	_	Unimpleme								_
91h	_	Unimpleme								_
92h	PR2	'	iod Register					- 77		1111 1111
93h		Unimpleme								_
94h	_	Unimpleme								_
95h	_	Unimpleme	ented							_
96h	_	Unimpleme	ented							_
97h	_	Unimpleme	ented							_
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010
99h	SPBRG	Baud Rate	Generator Re	egister				•	•	0000 0000
9Ah	EEDATA	EEPROM (data register		7					xxxx xxxx
9Bh	EEADR	_	EEPROM ad	dress regis	ter					xxxx xxxx
9Ch	EECON1	_	_	_	T -	WRERR	WREN	WR	RD	x000
9Dh	EECON2	EEPROM (control registe	er 2 (not a p	hysical reg	ister)				
9Eh	_	Unimpleme	ented							_
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000

Legend: – = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: For the Initialization Condition for Registers Tables

Table 8.SPECIAL FUNCTION REGISTERS SUMMARY BANK 2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset(1)	
Bank 2				•		•		•	•		
100h	INDF	Addressing ister)	Addressing this location uses contents of FSR to address data memory (not a physical reg- ster)								
101h	TMR0	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	
102h	PCL		ounter's (PC)	Least Sigr	nificant Byte)	ı			0000 0000	
103h	STATUS	IRP	RP1	RP0	то	PD	Z	DC	С	0001 1xxx	
104h	FSR	Indirect dat	a memory ad	ldress noin		FD		1	1	XXXX XXXX	
105h	-	Unimpleme		urcoo poiri	toi					_	
106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	
107h	- CICIB	Unimpleme	_	TABO	I NDT	TABO	TOZ	INDI	TOO		
108h	_	Unimpleme								_	
109h	_	Unimpleme								_	
10Ah	PCLATH		_		Write buffe	r for upper	5 bits of pro	oram count	er	0:0000	
10Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIE	0000 000x	
10Ch	_	Unimpleme				1 1 1 2 1 2			1.5.1	_	
10Dh	_		Jnimplemented Jnimplemented								
10Eh	_	Unimpleme								_	
10Fh	_	Unimpleme								_	
110h	_	Unimpleme								_	
111h	_	Unimpleme								_	
112h	_	Unimpleme								_	
113h	_	Unimpleme								_	
114h	_	Unimpleme	ented							_	
115h	_	Unimpleme	ented							_	
116h	_	Unimpleme	ented							_	
117h	_	Unimpleme	ented							_	
118h	_	Unimpleme	ented							_	
119h	_	Unimpleme	ented							_	
11Ah	_	Unimpleme	Unimplemented								
11Bh	_	Unimpleme	ented							_	
11Ch	_	Unimpleme	ented							_	
11Dh	_	Unimpleme	Unimplemented							_	
11Eh	_	Unimpleme	ented							_	
11Fh	_	Unimpleme	nted							_	

Legend: - = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: For the Initialization Condition for Registers Tables

Table 9.SPECIAL FUNCTION REGISTERS SUMMARY BANK 3

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset(1)	
Bank 3			•	•							
180h	INDF	Addressing ister)	Addressing this location uses contents of FSR to address data memory (not a physical regster)								
181h	OPTION	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	
182h	PCL		ounter's (PC)	Least Sigr	nificant Byte)				0000 0000	
183h	STATUS	IRP	RP1	RP0	ТО	PD	Z	DC	С	0001 1xxx	
184h	FSR	Indirect dat	ta memory ac	ldress poin		1 10	1	1	1	XXXX XXXX	
185h	_	Unimpleme		uroco pom						_	
186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	
187h	_	Unimpleme	ented		L					_	
188h	_	Unimpleme	ented							_	
189h	_	Unimpleme	ented							_	
18Ah	PCLATH		_	_	Write buffe	r for upper	5 bits of pro	gram count	er	0 0000	
18Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	
18Ch	_	Unimpleme	ented	I		1	1	1		_	
18Dh	_	Unimpleme	ented							_	
18Eh	_	Unimpleme	ented							_	
18Fh	_	Unimpleme	ented							_	
190h	_	Unimpleme	ented							_	
191h	_	Unimpleme	ented							_	
192h	_	Unimpleme	ented							_	
193h	_	Unimpleme	ented							_	
194h	_	Unimpleme	ented							_	
195h	_	Unimpleme	ented							_	
196h	_	Unimpleme	ented							_	
197h	_	Unimpleme	ented							_	
198h	_	Unimpleme	ented							_	
199h	_	Unimpleme	ented							_	
19Ah	_	Unimpleme	ented							_	
19Bh	_	Unimpleme	ented							_	
19Ch	_	Unimpleme	Unimplemented							_	
19Dh	_	Unimpleme								_	
19Eh	_	Unimpleme								_	
19Fh	_	Unimpleme	ented							_	

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings†

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to VSS	0.3 to +6.5V
Voltage on MCLR with respect to VSS	0.3 to +14V
Voltage on all other pins with respect to VSS	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	800 mW
Max. current out of VSS pin	300 mA
Max. current into VDD pin	250 mA
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > VDD$)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > VDD)	±20 mA
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	
Max. output current sourced by I/O port	200 mA
Max. output current sunk by I/O port	200 mA

Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - Σ IOH} + Σ {(VDD - VOH) x IOH} + Σ (VOL x IOL)

NOTICE: Stresses above those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

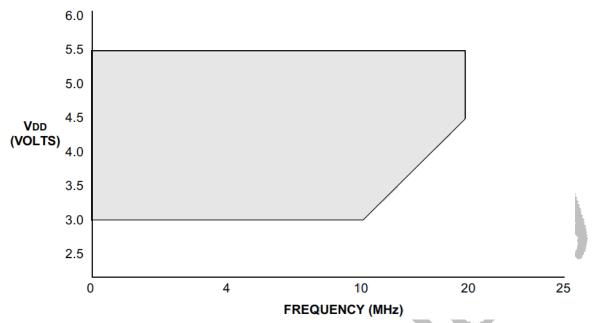


Figure 5.DIF81F646 VOLTAGE-FREQUENCY GRAPH,0 $^{\circ}\text{C} \leqslant$ TA \leqslant +70 $^{\circ}\text{C}$

Note 1: The shaded region indicates the permissible combinations of voltage and frequency

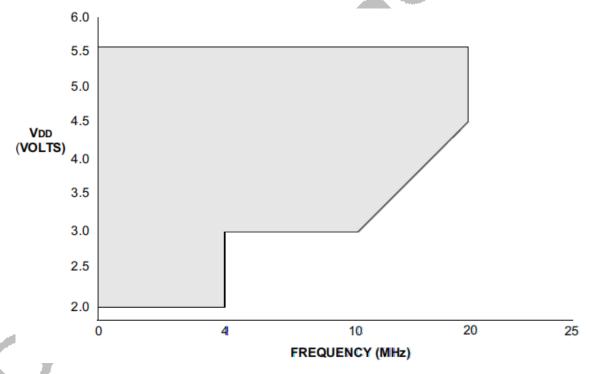


Figure 6.DIF81F646 VOLTAGE-FREQUENCY GRAPH,0°C≤ TA≤+70°C

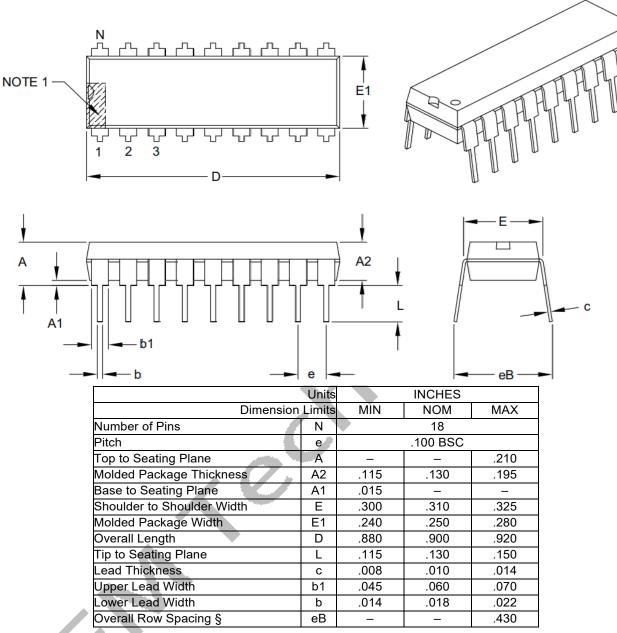
Note 1: The shaded region indicates the permissible combinations of voltage and frequency

DC Characteristics:DIF81F646

		DIF81F646	Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C ≤ Ta ≤ +85°C for industrial and 0°C ≤ Ta ≤ +70°C for commercial and -40°C ≤ Ta ≤ +125°C for extended						
Param No.	Sym	Characteristic/Device	Min	Typ†	Max	Units	Conditions		
D001	Vdd	Supply Voltage							
D001		DIF81F646	3.0	1	5.5	V			
D002	VDR	RAM Data Retention Voltage ⁽¹⁾	_	1.5	_	٧	Device in SLEEP mode*		
D003	VPOR	VDD Start Voltage to ensure Power-on Reset	_	Vss	_	V			
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05			V/ms			
D005	VBOD	Brown-out Detect Voltage	3.65 3.65	4.0 —	4.35 4.4		BODEN configuration bit is set BODEN configuration bit is set, Extended		

Legend: Rows with standard voltage device data only are shaded for improved readability.

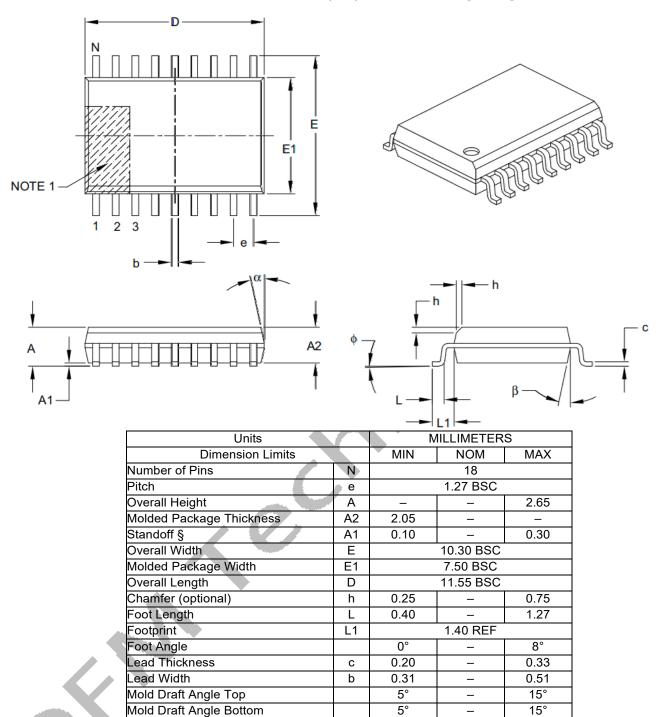
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.


^{*} These parameters are characterized but not tested.

 $[\]dagger$ Data in "Typ" column is at 5.0V, 25 $^\circ\,$ C, unless otherwise stated. These parameters are for design guidance only and are not tested.

Package Details

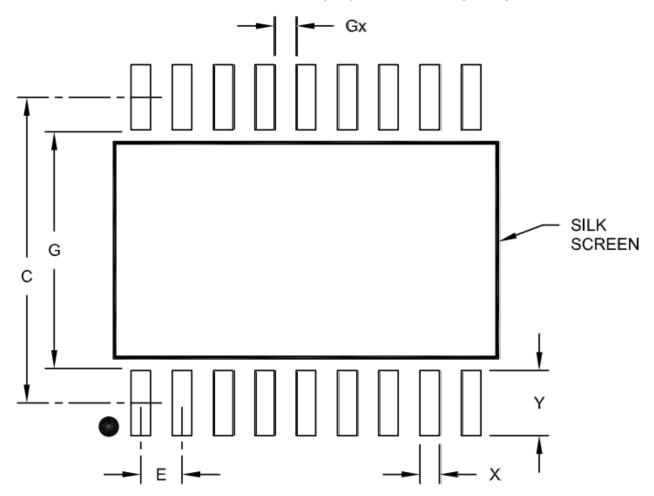
DIF81F646DI, 18-Lead Plastic Dual In-line (P)-300 mil[DIP]


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

DIF81F646SI, 18-Lead Plastic Small Outline (SO) -Wide, 300 mil[SOIC]


Notes:

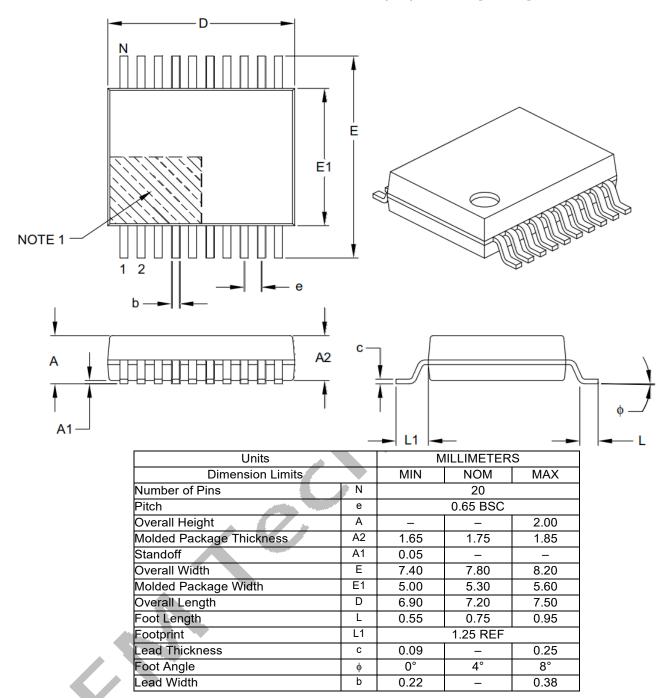
- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

DIF81F646SI, 18-Lead Plastic Small Outline (SO) -Wide, 300 mil[SOIC]

RECOMMENDED LAND PATTERN


	MILLIMETERS					
Dimension Limits		MIN	NOM	MAX		
Contact Pitch	Е	1.27BSC				
Contact Pad Spacing	С		9.40			
Contact Pad Width(X6)	Х			0.60		
Contact Pad Length(X6)	Υ			2.00		
Distance Between Pads	Gx	0.67				
Distance Between Pads	G	7.40				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

DIF81F646XI, 20-Lead Plastic Shrink Small Outline (SS) -.30 mm[SSOP]

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.